JPL, Al, and Data Science
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Tackling the Al and Data Challenges at JPL

- JPL is engaging data science and Al RIERIAR e
technologies and methodologiesfor
science, mission operations, engineering How NASA's Search for ET
applications. Relies on Advanced Al

— From onboard computing to scalable
archives to analytics

— Applying ML techniques with supporting
infrastructure
« JPL has established a program focused on
building and implementing an institution-
wide strategy for data science and Al

— Expanding from archives to enable data
analytics as a first class activity

— Methodology transfer across disciplines

— Research partnerships with academia,
government, and industry

Really, Really Big
| Data

NASA at the Forefront of
Analytics



Driving Al and Data Science into JPL Activities

« 25 pilots launched 2017-18
— Spanning science, mission and DSN operations, and formulation

— Building towards a data science vision of full utilization of data and agile
application of analytics

Use Cases: Science Use Cases: Mission Ops




Applying Al Across the Mission-Science Data Lifecycle

Emerging Solutions

*  Onboard Data
Analytics

*  Onboard Data
Prioritization

*  Flight Computing

Observational Platforms
and Flight Computing

Emerging Solutions

* Intelligent Ground
Stations

* Agile MOS-GDS

(1) Too much data, too fast;
cannot transport data
efficiently enough to store

(2) Data collection capacity at the
instrument continually outstrips data
transport (downlink) capacity

Ground-based Mission Systems

Massive Data Archives and

Big Dat ytics

Emerging Solutions
»  Data Discovery from

Archives

» Distributed Data
Analytics

«  Advanced Data Science
Methods

»  Scalable Computation
and Storage

(3) Data distributed in massive
archives; many different types of
measurements and observations

Concept included in OCT TA-11 Roadmap (2015): 11.4.1 — Mission, Science, Engineering Data Lifecycle






EO-1 (2004): Autonomous Spacecraft Al

The onboard software enabled the spacecraft to detect and track volcanism,
flooding, and cryosphere

Steve Chien, et al



Increasing Computing Capability Onboard

Heading Toward Multicore in Space

Voyager computer
- 8,000 instructions/sec and kilobytes of Curiosity (Mars Science Laboratory)
memory Processor: 200 MOPS BAE RAD750

iPhone _

- 14 GOPS and gigabytes of memory HPSC (NASA STMD / USAF)
Processor: 15 GOPS, extensible



Onboard Analysis
Dust Devils on Mars

Dust devils are scientific phenomena of a transient nature that occur on Mars
— They occur year-round, with seasonally variable frequency
— They are challenging to reliably capture in images due to their dynamic nature
— Scientists accepted for decades that such phenomena could not be studied in real-time

Spirit Sol 543
(July 13, 2005)

New onboard Mars rover capability (as of 2006)

e Collect images more frequently, analyze onboard to detect events, and only
downlink images containing events of interest

Benefit
< 100% accuracy can dramatically increase science event data returned to Earth
e First notification includes a complete data product

Credit: T. Estlin. B. Bornestein, A. Castano, J. Biesiadecki, L. Neakrase, P. Whelley, R. Greeley, M. Lemmon, R. Castano, S. Chien and MER project team



Surface Mobility

Mars Rover Navigation

] Athena
Flight Deployed

« 1996 Mars Pathfinder: obstacle avoidance with
structured light

« 2003 Mars Exploration Rover: obstacle
avoidance with stereo vision; pose estimation
and slip detection with visual odometry; goal
tracking

« 2011 Mars Science Laboratory: enhanced
obstacle avoidance, visual odometry and goal
tracking

Research and Development

— Enhanced hazard detection, traversability
analysis and motion planning for Mars 2020 and
beyond

Raw Navcam Human Terrain classifier

P~

T.Estlin, et al
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Onboard Numeric Watchdog for Analysis of Telemetry
Channel Heuristics (ON-WATCH)

Assessing Vehicle Anomalies

TERT L Y | "}

Bus Voltage (V)

Managing Bandwidth: Detect anomalous behavior using ML
techniques for investigation
Jack Lightholder & Lukas Mandrake



Oanard Proce_s:s for MSL
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Image pointing
determined by ' o g Navcam or RMI
ground. s acquisition

Detection of rock
candidates in
Navcam image.

Target detection

Quantification of key ' i o e Target feature
target properties such i e extraction

as intensity, size,
shape, and distance o
from rover. L

Ops can filter
targets based
on size,

distance, etc.
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Ops can - Target prioritization
prioritize S

important

properties Top score .

for each run for large size Determine center

target position . ‘Acquire ChemCam

LIBS raster of target
(size and direction
pre-specified by
ground)

& CCAM raster
Can repeat <l acquired
for multiple " .

targets




P

Shift toward Data A
J

; " &
” Y .1 e,




Data-Driven Capabilities Across
the Ground Environment

Intelligent Ground Stations

Data-Driven Discovery from Archives

Emerging Solutions

*  Anomaly Detection

» Combining DSN &
Mission Data

*  Attention Focusing

i > Controlling False

‘ Positives

Emerging Solutions
Automated Machine
Learning - Feature
Extraction

Intelligent Search
Integration of disparate

data

f |

Technologies: Machine Learning, Deep Learning, Intelligent Search,
Data Fusion, Interactive Visualization and Analytics

Agile Mission Operations

.| Emerging Solutions

| ° Anomaly Interpretation

» Dashboard for Time
Series Data

»  Time-Scalable Decision

Support

Operator Training

Data Analytics and Decision Support

& = Emerging Solutions
A =~ ! « |Interactive Data Analytics
~ N =1+ CostAnalysis of
RN Computation
| = Uncertainty Quantification
*  Error Detection in Data
Collection




Technical Capabilities Enabling Al & Analytics
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a m a : o n Lightning-Fast Cluster Computing
.

webservices™ Apache

. SOFTWARE FOUNDATION
aCccurmuLo

Cloud, Open Source,

and Big Data
Infrastructures
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Machine Learning
and Deep Learning
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Information Models

Visualization d
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Expanding to Data-Driven Analytics

Scalable
Data
Infrastructures

.
M

N

— | Formulation
£
e g Machine Learning/ _
%‘gg::';ﬁ:s Deep Learning ‘
Visualization Research/
Knowledge

On-Demand,
Interactive
Data Analytics

N

Data Integration

Today Data Archiving and Other Data
Stewardship of Massive Data Amg’;ss &

Future
Data Analytics

Reducing Data Wrangling: “There is a major need for the development of software components...
that link high-level data analysis-specifications with low-level distributed systems architectures.”

Frontiers in the Analysis of Massive Data, National Research Council, 2013.
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Data-Driven Approaches for Deep Space
Communication: Detecting Anomalies

Current Inputs: DSN operationally relevant data

Real Time Monitor
Data

Real Time Operator
Logs DSN Software Quality

Track Predicts Assessment (SQA)
Data Archive

Desired Output: Better Fault Detection and Diagnosis

- Relational database
- 10 years of data
- 1.3+ billion records

Real-Time, Historically
Informed Alerts Real-Time Insight into Data Points’

Criticality and Relationships

~

J Credit: Rishi Verma, JPL




WaterTrek:
Interactive Analytics for Western States Water Analysis

4o  Selectdatatooverlay. Expanding each item allows
you to change transparency and view legends for the
data
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WaterTrek: Analytic Data Infrastructure

R statistical
Python/Ipython  notebooks  programs Scala/Zeppelin

notebooks

e pgthon @ Zeppelin %
@ArcGIS” IPLyl: Pyon =4 = \ W}
| _ESri | C

Custom client Ul Hive SQL

vector and raster
processing services
at scale

geomesa i Geolrellis
REST Web Server

Apache
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distributed data stor

- E=Eralaram
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distributed file system

Open source and scalable to cloud; 180 billion data points accessible < 1 second



Mars Trek: Interactive Analytics for Exploring Mars

Q €] Curiosity Landing Site
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With a diameter of 154 km and a (
§ central peak 5.5 km tall, Gale Crater \ $
was chosen 35 the landing site for N N
the Mars Science Laboratory
Curiosity rover. The choice was
based on evidence from ordbiting
spacecraft that indicate that the
crater may have once contained
ol Croter with Curiosity large amounts of liquid water, The
g 122 (rited n yedom central peak, Mount Sharp, exhibits
layered rock deposits rich in
sedimentary minerals including cays, sulfates, and saits that
require water to form,

Credit: Emily Law, Shan Malhotra




Mars Image Classification

« About ~1.3M images from MRO Mission HIRISE instrument
* Previously no way to easily find images with certain landmarks (e.g., craters)

* New Approach:
1) Determine high salience (i.e., distinctive) regions by computing statistical

differences between pixel and surrounding context
2) Classify landmarks using machine learning model and user training data

Impact ejecta

Barchan dune Dark slope streak

Salience Map Examples of classified landmarks

POC: K. Wagstaff



Feature Identification in Astronomy Imaging

- 200 100
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Description: Detecting objects from astronomical measurements by evaluating light
measurements in pixels using machine learning.

Image Credit: Catalina Sky Survey (CSS), of the Lunar and Planetary Laboratory, University
of Arizona, and Catalina Realtime Transient Survey (CRTS), Center for Data-Driven Discovery, C2#tkch.






Methodology Transfer: ML and Crowdsourcing

to classify features in cancer images

Feature Traditional
Input  [— Extractor |~ Features —» ML —| Output
Algorithm

Traditional Machine Learning Flow

Input [—>] Deep Learning Algorithm —{ Output

malignit

{

Deep Learning Flow

input convi pool1 conv2 pool2 hiddend output

Promise: Pitfall:
Works better Blacker box

A. Mahabal, D. Liu, D. Crichton




Caltech-JPL
Partnership in Data Science and Al

Center for Data-Driven Discovery on campus/Center for Data Science
and Technology at JPL

From basic research to deployed systems ~10 collaborations
Leveraged funding from JPL to Caltech; from Caltech to JPL

Virtual Summer School (2014) has seen over 25,000 students

DD

CENTER FOR DATA-DRIVEN DISCOVERY

aaaaaaa



Conclusions

« JPL Strategy is to drive Al and Data
Science into the fabric of JPL by
— Launching cross-institution pilots
— Building a trained workforce
— Linking to the mission-science data lifecycle

» Great opportunities to both innovate
onboard and leverage emerging capabilities
and platforms on the ground

— Transform autonomy onboard
— Transform mission operations
— Drive new science insights

« Al and Data Science will be an essential part of
NASA's future!
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